('Iter', 1280, ', Minibatch Loss=25021.994141', ', Training Accuracy=0.26562')
('Iter', 2560, ', Minibatch Loss=20956.230469', ', Training Accuracy=0.41406')
('Iter', 3840, ', Minibatch Loss=10467.468750', ', Training Accuracy=0.54688')
('Iter', 5120, ', Minibatch Loss=6931.669434', ', Training Accuracy=0.64844')
('Iter', 6400, ', Minibatch Loss=11381.146484', ', Training Accuracy=0.58594')
('Iter', 7680, ', Minibatch Loss=6931.756836', ', Training Accuracy=0.67188')
('Iter', 8960, ', Minibatch Loss=6043.289062', ', Training Accuracy=0.70312')
('Iter', 10240, ', Minibatch Loss=2950.967041', ', Training Accuracy=0.78906')
('Iter', 11520, ', Minibatch Loss=4387.661133', ', Training Accuracy=0.79688')
('Iter', 12800, ', Minibatch Loss=4279.759277', ', Training Accuracy=0.78125')
('Iter', 14080, ', Minibatch Loss=2511.234863', ', Training Accuracy=0.84375')
('Iter', 15360, ', Minibatch Loss=3200.528809', ', Training Accuracy=0.79688')
('Iter', 16640, ', Minibatch Loss=2861.273438', ', Training Accuracy=0.82031')
('Iter', 17920, ', Minibatch Loss=2214.196289', ', Training Accuracy=0.88281')
('Iter', 19200, ', Minibatch Loss=989.559265', ', Training Accuracy=0.90625')
('Iter', 20480, ', Minibatch Loss=4211.814941', ', Training Accuracy=0.78906')
('Iter', 21760, ', Minibatch Loss=1644.427979', ', Training Accuracy=0.91406')
('Iter', 23040, ', Minibatch Loss=2109.490967', ', Training Accuracy=0.87500')
('Iter', 24320, ', Minibatch Loss=2386.041504', ', Training Accuracy=0.83594')
('Iter', 25600, ', Minibatch Loss=1501.948364', ', Training Accuracy=0.88281')
('Iter', 26880, ', Minibatch Loss=2240.972656', ', Training Accuracy=0.82812')
('Iter', 28160, ', Minibatch Loss=2119.425537', ', Training Accuracy=0.87500')
('Iter', 29440, ', Minibatch Loss=2242.839844', ', Training Accuracy=0.82812')
('Iter', 30720, ', Minibatch Loss=1093.348633', ', Training Accuracy=0.88281')
('Iter', 32000, ', Minibatch Loss=1532.251099', ', Training Accuracy=0.88281')
('Iter', 33280, ', Minibatch Loss=985.126221', ', Training Accuracy=0.88281')
('Iter', 34560, ', Minibatch Loss=1191.394165', ', Training Accuracy=0.90625')
('Iter', 35840, ', Minibatch Loss=2769.808105', ', Training Accuracy=0.82812')
('Iter', 37120, ', Minibatch Loss=451.285889', ', Training Accuracy=0.94531')
('Iter', 38400, ', Minibatch Loss=857.569580', ', Training Accuracy=0.89844')
('Iter', 39680, ', Minibatch Loss=2352.155762', ', Training Accuracy=0.88281')
('Iter', 40960, ', Minibatch Loss=1384.690674', ', Training Accuracy=0.90625')
('Iter', 42240, ', Minibatch Loss=828.415405', ', Training Accuracy=0.92188')
('Iter', 43520, ', Minibatch Loss=437.712341', ', Training Accuracy=0.95312')
('Iter', 44800, ', Minibatch Loss=584.637817', ', Training Accuracy=0.89844')
('Iter', 46080, ', Minibatch Loss=1383.199707', ', Training Accuracy=0.89062')
('Iter', 47360, ', Minibatch Loss=1923.911255', ', Training Accuracy=0.88281')
('Iter', 48640, ', Minibatch Loss=1327.275146', ', Training Accuracy=0.88281')
('Iter', 49920, ', Minibatch Loss=450.466156', ', Training Accuracy=0.90625')
('Iter', 51200, ', Minibatch Loss=461.589783', ', Training Accuracy=0.93750')
('Iter', 52480, ', Minibatch Loss=512.834595', ', Training Accuracy=0.95312')
('Iter', 53760, ', Minibatch Loss=1481.610840', ', Training Accuracy=0.85156')
('Iter', 55040, ', Minibatch Loss=1503.613281', ', Training Accuracy=0.90625')
('Iter', 56320, ', Minibatch Loss=663.131042', ', Training Accuracy=0.91406')
('Iter', 57600, ', Minibatch Loss=836.979126', ', Training Accuracy=0.94531')
('Iter', 58880, ', Minibatch Loss=1394.500244', ', Training Accuracy=0.92188')
('Iter', 60160, ', Minibatch Loss=1150.654297', ', Training Accuracy=0.89062')
('Iter', 61440, ', Minibatch Loss=884.085022', ', Training Accuracy=0.89844')
('Iter', 62720, ', Minibatch Loss=641.650208', ', Training Accuracy=0.93750')
('Iter', 64000, ', Minibatch Loss=612.565613', ', Training Accuracy=0.92188')
('Iter', 65280, ', Minibatch Loss=1026.186890', ', Training Accuracy=0.88281')
('Iter', 66560, ', Minibatch Loss=1012.022217', ', Training Accuracy=0.89844')
('Iter', 67840, ', Minibatch Loss=538.746582', ', Training Accuracy=0.92969')
('Iter', 69120, ', Minibatch Loss=2331.966064', ', Training Accuracy=0.85156')
('Iter', 70400, ', Minibatch Loss=611.249207', ', Training Accuracy=0.92969')
('Iter', 71680, ', Minibatch Loss=611.909607', ', Training Accuracy=0.94531')
('Iter', 72960, ', Minibatch Loss=1363.580566', ', Training Accuracy=0.88281')
('Iter', 74240, ', Minibatch Loss=996.121582', ', Training Accuracy=0.91406')
('Iter', 75520, ', Minibatch Loss=730.850952', ', Training Accuracy=0.92969')
('Iter', 76800, ', Minibatch Loss=781.747681', ', Training Accuracy=0.92969')
('Iter', 78080, ', Minibatch Loss=854.089539', ', Training Accuracy=0.93750')
('Iter', 79360, ', Minibatch Loss=1397.916870', ', Training Accuracy=0.88281')
('Iter', 80640, ', Minibatch Loss=1405.003418', ', Training Accuracy=0.88281')
('Iter', 81920, ', Minibatch Loss=806.627136', ', Training Accuracy=0.92188')
('Iter', 83200, ', Minibatch Loss=647.945007', ', Training Accuracy=0.93750')
('Iter', 84480, ', Minibatch Loss=1018.518982', ', Training Accuracy=0.93750')
('Iter', 85760, ', Minibatch Loss=1204.980469', ', Training Accuracy=0.89062')
('Iter', 87040, ', Minibatch Loss=743.574951', ', Training Accuracy=0.92188')
('Iter', 88320, ', Minibatch Loss=638.823486', ', Training Accuracy=0.95312')
('Iter', 89600, ', Minibatch Loss=549.751770', ', Training Accuracy=0.96094')
('Iter', 90880, ', Minibatch Loss=727.560242', ', Training Accuracy=0.91406')
('Iter', 92160, ', Minibatch Loss=624.963196', ', Training Accuracy=0.91406')
('Iter', 93440, ', Minibatch Loss=1152.272461', ', Training Accuracy=0.85938')
('Iter', 94720, ', Minibatch Loss=409.238037', ', Training Accuracy=0.95312')
('Iter', 96000, ', Minibatch Loss=444.576447', ', Training Accuracy=0.92969')
('Iter', 97280, ', Minibatch Loss=1209.410645', ', Training Accuracy=0.86719')
('Iter', 98560, ', Minibatch Loss=217.887985', ', Training Accuracy=0.93750')
('Iter', 99840, ', Minibatch Loss=469.807068', ', Training Accuracy=0.92969')
Optimization finished. Am robot.