
Neural
Computation

VS 265
Contents

1.1 Sparse Distributed Coding . 2

1.2 Foldiak Paper - Sparse Coding . 5

1.3 Comprehensive Review . 8

1.3.1 Unsupervised Learning . 8

1.4 Lab 4 & LCA Handout . 12

1.5 HKP 9.4 - Feature Mapping . 14

1.6 Locally Linear Embedding . 15

1.7 Recurrent Neural Networks . 17

1.8 Hopfield Networks Handout . 20

1.9 Mixture of Gaussians and EM Algorithm . 22

1.10 Boltzmann Machines . 24

1.10.1 Lecture Slides . 24

1.10.2 HKP Chapter 7.1 . 24

1.10.3 Boltzmann Machines - AIFH . 25

1.11 Independent Component Analysis . 26

1.11.1 ICA - Andrew Ng - CS 229 . 28

1

Neural Computation Fall 2016

Sparse Distributed Coding: September 29
Table of Contents Local Written by Brandon McKinzie

• VI simple-cell receptive fields are localized, oriented, and bandpass.

• PCA is really bad for such situations.

• To detect sharp edges in images, need high frequency and in-phase combinations.

• Higher-order image statistics:

– phase alignment
– orientation
– motion

• want to move beyond pairwise correlations.

• WTA is too greedy, want more distributed strategy.

• Idea: Projection pursuit.

– Look for low-dimensional projections that are as non-Gaussian as possible.
– Projections tend to result in Gaussian distributions by the C.L.T.
– Want to explore projections onto a weight vector until find something Non-

Gaussian. Why? Because such a distribution could not have happened by
accident.

• Gabor-filter response histograms are highly non-Gaussian.

• (Lab-related) Paper on Forming sparse representations by local anti-Hebbain learning.

– Each neuron takes weighted input sum, as well as getting lateral inhibitaion by
neighbors, but where the lateral weights are all negative. Put all through f , some
sigmoidal non-linearity. ”leaky integrator”

– Want population-sparcity, so need neurons decorrelated. Have three learning
rules: anti-Hebbian, Hebbian, and threshold modification.

2

– Threshold modification resembles homeostasis.

∆ti = γ(yi − p) (1)

which is essentially SGD. Think about average behavior, as it relates to yi output
and p. p is a constant to be determined. Feedback loop. Adjusts spiking threshold.

– Anti-hebb guarantees neurons are decorrelated.

∆wij = α(yiyj − p2) (2)

where p2 because this is what we would expected if i and j were decorrelated.
There more coactive two neurons are, the more this drives them to repulse one
another.

– Standard hebbian rule

∆qij = βyi(xj − qij) (3)

relates to sparsity fraction of neurons.

• Problems:

– Don’t know how to deal with graded (i.e. non-binary) input signals. Non-discrete
stuff.

– No objective function. Would like way to characterize how well system is per-
forming.

• Led to Bruno’s work: sparse coding for graded signals

– Data described by

I(x, y) =
∑
i

ai φi(x, y) + ε(x, y) (4)

– basis decomposition of input. neuron i with activity ai means that need feature
functions φ to describe model. Want the neural activities ai to be sparse.

– Constrain sparseness of ai by imposing cost function on the activity:

E =
1
2 |I −Φa|2 + λ

∑
i

C(ai) (5)

where first term: preserve information and second term: I want to be sparse.
– Penalty function C shaped like really steep parabola on zero. Or could do C = |ai|,

v-shaped thing.
– Energy function determines dynamics of system. Want neuron activity to be

expressible as a function of the input I.

3

– Compute coefficients ai by gradient descent.

τ ȧi = −
dE

dai
(6)

– Neuron i inhibited by neuron j proportioanl to their functions phi inner products.
– self-inhibition of neuron back on itself makes it sparse.
– Learning rule:

∆φi = −η
∂E

∂φi
(7)

=
[
I −Φâ

]
âi (8)

4

Neural Computation Fall 2016

Foldiak Paper - Sparse Coding:
Table of Contents Local Written by Brandon McKinzie

• Abstract: A layer of simple Hebbian units connected by modifiable anti-Hebbian feed-
back connections can learn to code a set of patterns in such a way that statistical
dependency between the elements of the representation is reduced, while information
is preserved.

• Introduction

– Input-space that is our surrounding is enormous, but most inputs are highly
correlated, which the brain may exploit to transform the high-dimensional pattern
inputs to symbolic representations. Objects may be defined as conjunctions of
highly correlated sets of components that are relatively independent of other such
conjunctions1

• Unsupervised Learning

– The complexity of the mapping to be learnt ⇐ complexity of the input.
– Unsupervised learning exploits statistical regularities in input to learn a more

meaningful symbolic representation.

• The Hebb Unit

– Simple model of cell (basically perceptron)

y =

1 ∑
j wjxj > thresh

0 otherwise
(9)

– Can be thought of as pattern matching; y is maximal when weight vector = input
vector pattern.

– Hebb proposed: connection should become stronger if the two units being con-
nected are active simultaneously: ∆wj = xjy.

• Competitive Learning

1Translation: objects are clumps of stuff that are usually found clumped together, and such that these
clumps tend not to clump with other clumps.

5

– Out of the units receiving weighted sums of the input, only activate the unit with
the largest weighted sum; suppress the output of all others.

– Results in a local, ”grandmother-cell” representation.
– Limited in number of different inputs it can discriminate, and in ability to gener-

alize.

6

• Sparse Coding

– Distributed coding: instead, code each input state by a set of active units (rather
than just one).

– Pros: combinatorics of input states increases representational capacity. Cons:
situations where many units are active per input pattern, and fact that learning
can be extremely slow.

– Sparse Coding is a compromise between distributed and local representations.

• Decorrelation

– Units within a layer are connected by modifiable inhibitory weights, governed by
an Anti-Hebbian learning rule: if two units in same layer are active, connec-
tion becomes more inhibitory2.

2which discourages their joint activity

7

Neural Computation Fall 2016

Comprehensive Review:
Table of Contents Local Written by Brandon McKinzie

Unsupervised Learning

• Bruno:PCA

– First, let’s get this straight. Difference between covariance and correlation:

COV[X,Y] , E [(X − µX)(Y − µY)] (10)

CORR[X,Y] ≡ ρXY ,
Cov[X,Y]
σX σY

(corr)

– Consider input stream x that has linear pairwise correlations3 among its elements.
Mathematically, correlation between elements xi and xj would imply that

〈xixj〉 =
E [xixj]√

E [xi]E [xj]
6= 0 (11)

or, equivalently, that E [xixj] 6= E [xi]E [xj] = 0. Bruno is correct that linear
pairwise correlations imply that cij 6= 0, he is absolutely incorrect to say that
cij is an “average over many examples.” That is nothing more than academic
sloppiness at its finest.

• HKP:PCA

– Goal: Find a set of M orthogonal vectors in data space that account for as much as
possible of the data’s variance. Projecting the data from original N -dimensional
space onto the M -dimensional subspace spanned by these vectors then performs
a dimensionality reduction.

– HKP actually states accurately what Bruno meant to state: The kth principal
component direction is along an eigenvector direction belonging to the kth largest
eigenvalue of the full covariance matrix

〈(ξi − µi)(ξj − µj)〉 (12)

– Note: I am now going to start from beginning of CH8 of HKP since I’m not
understanding the stuff they are referencing FML

3This is exactly what is meant by eq corr, Pearson’s correlation coefficient. Linear because “it is a
measure of the linear dependence between two variables X and Y.”

8

• HKP Ch8: Unsupervised Hebbian Learning

– Units need to learn patterns/correlations/categories in inputs and code the out-
put. Units and connections display some degree of self-organization.

– Redundancy provides knowledge: w/o redundancy there would be no patters to
learn.

MaxInfoPossible− InputContent = DegreeOfRedundancy (13)

– PLAIN HEBBIAN LEARNING. Context: output will be continuous-valued
and DO NOT have a winner-take-all character4, and so the purpose is to measure
familiarity or projecting onto principal components of input data.

– Setup: Draw at each time step an input vector ξ from (multivariate) probability
distribution P (ξ) that has N components5. Network will learn to tell us - as
output - how well an input conforms to the distribution6

– (One linear output unit): Let V be a scalar-valued continuous output with a
bunch of inputs pointing to it, with

V =
∑
j

wjξj = wTξ = ξTw (14)

– Want large (on average) V ↔ more probable ξ. Why? Because then we can use
the relative size of the output as a way of characterizing the sort of input it just
received (see footnote 26 below). The weight update to do this is plain Hebbian
learning update:

∆wi = ηV ξi (15)

where it is perhaps easier to think about the situation where ∆wi = 0 when
analyzing, i.e. If ξi = 0 (which means it had nothing to do with the output), then
don’t increase it’s weight7.

4TODO: Come back and explain why this is true, because current Brandon thought otherwise.
5Confusingly, here N refers to the dimension of space that each input vector lives in (usually denoted by

d.)
6Q: Come back and explain why we would want a network to do this. Biological relevance/analog?

A: You need to view it in the context of the grandmother-cell. That’s what this is all about. If a given
neuron has a large linear output, then we have a good idea of what type of input went in; it was an input
really similar to the weight vector. This begs the question, though: how does one determine a reasonable
initialization for a given connected layer of weights to a single output? I suppose the answer is that this is
the wrong question. Rather, we should interpret the outcome as resulting from a stream of particular inputs
and, based on its future responses to inputs, we can determine what type of input went in. With the brain,
this is like the jennifer aniston neuron: if that neuron fires, we can assume the person just saw something
that resembled Jennifer Aniston.

7Minor TODO: Analyze case of non-binary (i.e. continuous both pos/neg) inputs/outputs.

9

– Problem: w grows without bound. However, suppose stable equilib exists for w.
This could happen for example, when considering that the update just performs
w = ηV ξ, where eventually ||w|| >> ||ξ|| in addition to the fact that ξ is quite
likely to be along w. So at equilib, expect the updates to average to 0:

0 = 〈∆wi〉 (16)
= 〈

∑
j

wjξjξi〉 (17)

=
∑
j

Cijwj (18)

where the brackets are expectation values in the sense that

〈ξiξj〉 =
∫∫ ∞
−∞

ξiξjfξiξj (ξi, ξj)dξidξj (19)

where f is the PDF for the two random variables in question. I suppose that,
since strictly speaking w isn’t a random variable, that it can be pulled out along
with the summation. That satisfies me for now.

– Given that ξ can be interpreted as a column vector, we have

Cij ≡ 〈ξiξj〉 (20)
C ≡ 〈ξξT 〉 (21)

Now, to be perfectly clear, this is NOT the correlation, but I am so sick and tired
of caring that I’m just going to accept their absolutely incorrect definition and
move on.

– Since I’ve read ahead, I know that the following property will be important to
remember:

∀x, xTCx = xT 〈ξξT 〉x (22)
= 〈xTξξTx〉 (23)
= 〈(ξTx)2〉 (24)

– There are only unstable fixed points (unstable equilib) for the plain Hebbian
learning procedure.

– OJA’S RULE. Goal: Modify plain Hebb rule such that |w| = 1.
– Solution: Add a weight decay proportional to V 2:

∆wi = ηV (ξi − V wi) (25)

and we see that ∆w depends on the difference between the input and the back-
propagated output8

8Say ’back-propagated output’ because we are subtracting what was put into the network by the resultant
output times the connection (weight) between the input and said output. Dwelling on this would be overly
pedantic, so move on.

10

– Informal analysis for zero-mean data: The average component of ξ along w will
be zero, but since this is an algorithm depending on an unstable equilibrium, it
will tend to fall along the maximal eigenvector of C.

– Oja’s rule chooses the direction of w to maximize 〈V 2〉.
– Sanger’s Learning Rule. Setup: Now, instead of 1 output, have M output

neurons with the hopes that they gives us the first M principal components of
the input data. Architecture is ONE LAYER fully connected.

– The ith output is a linear neuron as usual given by

Vi =
∑
j

wijξj = wT
i ξ = ξTwi (26)

– The Sanger’s learning rule update for the connection from the jth input compo-
nent to the ith output neuron (so we are only updating a single edge/line in the
following) is

∆wij = ηVi

(
ξj −

i∑
k=1

Vkwkj

)
(27)

where the (converged) weight vectors to the output neurons are orthonormal and
converge to the normalized eigenvectors in order of largest to smallest eigvals:

wT
i wj = δij (28)
wi → ±ci (29)

11

Neural Computation Fall 2016

Lab 4 & LCA Handout:
Table of Contents Local Written by Brandon McKinzie

• Want to learn a “dictionary” from data

• Encode input data such that it can be reconstructed from that code, where dim(encoding)
¿ dim(input).

• Given N -dimensional input, build N ×M dictionary9 (matrix) Φ where each column
φi is a dictionary element with corresponding coefficient10 ai. Want to assemble aiφi
into a vector of activations.

• GOAL: Minimize energy function E, defined as

E =
1
2 ||S − Ŝ||

2
2 + λ

M∑
i

C(ai) (30)

where Ŝ =
∑M
i aiφi is for some reason called the image reconstruction. View this like

a regularization procedure where the terms mean: (1) smallest difference between true
image and reconstructed image (reconstruction quality); and (2) limit the number
of active elements11 ai.

• Want to minimize E such that reconstructs data with fewest number of active elements,
expressed as

arg min
a, Φ

(
E
)

(argminE)

where I guess the double argmin means ”minimize E by changing a and Φ only and
then give me the values of a and Φ.

• Popular cost function is the `1 penalty:
M∑
i

C(ai) =
M∑
i

|ai| (31)

• We compute coeff vector a using a “dynamic process”12 that minimizes argminE.
9M ¿ N.

10Looks like ai /∈ Φ
11A.k.a sparsity constraints a.k.a limit activations.
12Okay well what the fuck is it?

12

• Method for computing the sparse code from a given input signal S and dictionary
element φi is the Locally Competitive Algorithm.

The model describes an activation coefficient, ak, as the thresholded out-
put of some model neuron’s internal state, uk, which is analogous to the
neuron’s membrane potential.

• Here we compute the equation for state transitions (updates) from the energy function.
First, for grad descent on an individual neuron’s activity, ak(t):

− ∂E(t)
∂ak(t)

=
N∑
i

[
SiΦik −

M∑
j 6=k

ΦikΦijaj

]
− ak − λ

∂C(ak)

∂ak
(32)

where the constants are S and Φ. Want system to evolve over time to produce optimal
set of activations a(t).

• Meaning of φk. Associated with kth (output?) neuron. Indicates the connection
strength [between that neuron and] each pixel in the input.

In this model, we are going to
nd a sparse code for one patch of an image at a time, so that all M neurons
are connected to the same image patch, S.

13

Neural Computation Fall 2016

HKP 9.4 - Feature Mapping:
Table of Contents Local Written by Brandon McKinzie

Nearby (similar) outputs corresponding to nearby (similar) input patterns. Such a map
(similar inputs → similar outputs) is a feature map. The conventional case: 2 continuous-
valued inputs x and y map (fully-connected) to a two-dimensional x,y grid. Want nearby
input values (in the actual euclidean sense) (x, y) to be mapped closely in the output 2D grid.

Kohonen’s Algorithm implements the self-organizing (feature) map by using competitive
learning, where now we update weights going to the neighbors of the winning unit as well as
those of the winning unit itself.

• Setup: N continuous-valued inputs ξ1 to ξN , defining a point ξ in N -dimensional space.
Outputs Oi are arranged in (typically) a 1-D or 2-D array fully connected via wij to
the inputs.

• A competitive learning rule is used, choosing output O∗i as winner, determined by

|w∗
i − ξ| ≤ |wi − ξ| (for all i) (33)

• The Kohonen Learning Rule is

∆wij = ηΛ(i, i∗)(ξj −wij) (34)

where Λ(i, i∗) is the neighborhood function, equal to 1 for i = i∗ and falls off with
distance |r− r∗i |.

• A typical choice for Λ(i, i∗) is

Λ(i, i∗) = exp
(
− |r− r

∗
i |2

2σ2

)
(35)

where σ is width parameter that is gradually decreased. Apparently η(t) ∝ t−α where
0 < α ≤ 1 is a good choice.

14

Neural Computation Fall 2016

Locally Linear Embedding: October 19
Table of Contents Local Written by Brandon McKinzie

LLE is an unsupervised learning algorithm for dimensionality reduction. Similar to PCA and
MDS13, LLE is called an eigenvector method. The basic idea is illustrated below in figure 1.

The LLE algorithm:

1. Compute the neighbors of each data point, Xi.

2. Compute the weights Wij that best reconstruct each Xi from its neighbors, minimizing
the cost in

ReconErr(W) =
∑
i

|Xi −
∑
j

WijXj |2 (36)

by constrained linear fits.

3. Compute the Yi reconstructed by the weights Wij , minimizing the quadratic form in

Φ(Y) =
∑
i

|Yi −
∑
j

WijYj |2 (37)

by its bottom nonzero eigenvectors.

Figure 1: (A) Multidimensional sampling distribution with clear underlying manifold represen-
tation. (B) Points that were sampled. (C) The neighborhood-preserving mapping discovered by
LLE.

13Multidimensional scaling

15

Some intuition/overview of the algorithm. We expect each Xi and its neighbors to lie on
or close to a locally linear patch of the manifold. We characterize these patches by linear
coefficients Wij that reconstruct each Xi from its neighbors. As seen in eq. 36, the recon-
structed point Xi is given by ∑jWijXj .

Computing/analyzing the weights Wij . Minimize eq 36 subject to

∀Xj /∈ Neighbors(Xi) : Wij = 0 (38)∑
j

Wij = 1 (39)

where the optimal weights are found by solving a least squares problem. Note that for a
given data point, the weights are invariant to rotations, rescalings, and translations of that
data point and its neighbors.14 If the data lie on some nonlinear manifold of d << D, then
there exists a linear mapping (approx) from the high-D coordinates of each neighborhood to
global (’internal’) coordinates on the manifold. Lucky for us, W can also do this!15

Explanation of eqs. 36 37. Note that eq. 36 is minimized over the Wij , while equation 37
is minimized over the Yi. In English: We first want the weights W that reconstruct each Xi

by its neighbors in the high-D space. Then, we want the low-d coordinates Yi, representing
the global coordinates on the manifold, that correspond to each Xi from the original space.
How it is minimized:

it can be minimized by solving a sparse N ×N eigenvector problem, whose bot-
tom d non-zero eigenvectors provide an ordered set of orthogonal coordinates
centered on the origin.

Implementation of algorithm. Only one free parameter: number of neighbors per data
point K. Wij and Yi are computed by ’standard linear algebra’.

14In other words, since the weights just characterize the local patch of the given data point, that patch
shouldn’t change if we shift the data, rotate it, or scale it. The neighboring points should remain the same.

15In particular, the same weights Wij that reconstruct the ith data point in D dimensions should also
reconstruct its embedded manifold coordinates in d dimensions

16

Neural Computation Fall 2016

Recurrent Neural Networks: October 20
Table of Contents Local Written by Brandon McKinzie

Lab 6 Overview. Briefly goes over how we can corrupt some number of bits and reconstruct
a desired image [with hopfield nets]. Unfortunately, can get “spurious basins of attractions.”
Pushing down on some region of landscape causes pushing up of some other region. Want
to carve energy landscape so that we push down only where we want.

Bump circuits and ring attractors. Want family of solutions (e.g. a line) that solutions
drawn to (called line attractors). Head-direction neurons16 look like an internal compass
for animals; encode direction of head in world coordinate system. Different dots represent a
single neuron’s firing rate at different relative head directions. Ring attractors: population
of neurons that with bumps that are stable (?). Convergence/stability because Tij matrix is
symmetric. Symmetric = fixed stable; Asymmetric =

Bruno shows simulation:

• 32 neurons where bar is activity of neuron.
• Start with random symmetric weight hopfield net.
• Eventually weights converge to gaussian-like bump; an equipotential pattern.
• If we add small asymmetry (gamma) to weights, then population (bump) would shift.

Bump change is shifting position, and when the asymmetry stops (we stop moving our
head) the population stays fixed. In English: moving head causes bump to move but
when we stop moving, they stay put.
• For more: Read ”catcher and zong” paper. I misspelled that.

[Enter guest lecturer Alex Anderson] Recurrent Neural Networks:

→ Starts with handwriting network.
→ RNNs good for sequence prediction tasks with “long-term dependencies.”

16Literally referring to direction of [e.g. some animal’s] head

17

Backprop Review. Blobs do activation computation and transformers do propagations.
Note: At is target output values.

Problem to Solve. Feed net a bunch of sentences and have it fill in the blank somewhere,
based on the previous info it was fed. Mad libs. Have network understand particular frame
of movie by exploiting context; just showing it a bunch of frames isn’t enough/good approach.

RNN loops/Notation. Feed time sequence xt to block A. Two figures in this slide are
different reps of same thing; instructor prefers the right fig. Hk is hidden state we want to
predict17. f can be some nonlinearity like tanh. In RNNs, cost function typically broken up
over time; so Ck is cost at timestep k. Usually want hidden state to summarize the past.
Hidden state traces out a trajectory over time [wut].

Unroll a RNN. Can basically turn RNN into a linearized hidden markov chain, where time
proceeds to the right. Total cost is given by cost at each time step.

Long-term Dependencies. Shows toy model. Imagine ur an ant walking along graph.
Given string of nodes, predict next letter each timestep [solve the question mark in slide].
Don’t necessarily want/need whole past as input. Want to remember past [hidden] states,
but they usually get overwritten; want to save it more efficiently. Key: want to make func-
tion simple, give the network parameterization.

Exploding/vanishing gradients. Local dependencies easy to learn.

→ Once we get to B, want network to output a U.
→ To learn, errors need to propagate back [in time], so we can change the weights that

started the error: gradient of cost at timestep k with respect to initial weights using
chain rule. Basically a product of k matrices.

→ If k large and matrices have eigvals less than 1, gradients vanish. If eigvals above 1,
gradients explode. So what we want is for eigvals to be very near 1.

→ Todo: lookup relationship between eigval magnitudes and determinant.

17Analogy to hopfield: H is like hopfield B. X is like external I in hopfield.

18

Solution: Multiplicative Gating. Helps protect hidden state. MultGate can be either 0
or 1, and we multiply the hidden state by that value; if we 0 lose the hidden state; if 1 we
keep the hidden state. Since binary functions not smooth/differentiable, continuous gating
is better. [slide note: top row is w/o multgate, lower row is with multgate]. Key equation:

ct = ft � ct−1 + it � jt

where � is elementwise product.

Note: This is in TensorFlow now.

19

Neural Computation Fall 2016

Hopfield Networks Handout: October 26
Table of Contents Local Written by Brandon McKinzie

Energy Function. The following governs the dynamic of pairwise recurrently connected
networks.

E =
1
2
∑
i

∑
j 6=i

TijViVj (40)

For symmetric weights Tij = Tji, consider the change in energy ∆E resulting from making
a positive change to Vk18

∆E = −∆Vk
∑
i 6=k

TkiVi (41)

which will be negative if both ∆Vk and the sum are positive, thus decreasing the overall
energy (good). Conversely, if sum is negative, we should decrease value of Vk. Critical
assumption: Symmetric Tij = Tji. Without this assumption, impossible to show the
system will have fixed points.

For a network with symmetric connections though, the dynamics will converge
to so-called basins of attraction.

Setting the Weights. Goal: store pattern Vα as basin of attraction in network. One
approach: the Hebbian prescription Tij = V α

i V
α
j .

→ Single memory storage. Now, the summed input sent to, say, the ith unit in response
to some Vβ will be given by

Ui = V α
i

∑
j 6=i

V α
j V

β
j (42)

and thus if Vα = Vβ, Ui won’t flip sign and the networks stays put.

→ Multiple memories. Now, need to form as many basins of attractions as memories
we want stored. Set weights with a superposition over each desired memory Vα: Tij =∑
α V

α
i V

α
j , and the corresponding response of the ith neuron is

Ui =
∑
α
V α
i

∑
j 6=i

V α
j V

β
j (43)

18If it is -1, change to +1, else just keep where it is.

20

Capacity for a Hopfield Network. If the patterns to store (memories) have few elements
in common, then cross terms ∑j 6=i V

α
j V

β
j tend to zero for α 6= β (since each V α

j is ±1 and
a random average over ±1 is zero) and Ui won’t change. As we store more patterns which
are similar, memories degrade and basins gone from desired locations. This capacity for
Hopfield is ≈ 15% of the number of neurons in network19.

19Assuming the stored patterns are relatively dissimilar.

21

Neural Computation Fall 2016

Mixture of Gaussians and EM Algorithm: November 3
Table of Contents Local Written by Brandon McKinzie

(MOG) Model Assumptions. Assume each x(i) generated by sampling z(i) ∼Multinom(φ)20

and then positing that x(i) was drawn from the Gaussian associated with z(i) (so k possible
Gaussians since z could be one of k classes), i.e.

x(i)|z(i) = j ∼ N (µj , Σj) (44)

Goal. Estimate the parameters of our model, φ,µ, Σ. We can do this by writing the
likelihood of our data (m data points):

`(φ,µ, Σ) =
m∑
i=1

log
 k∑
z(i)=1

p
(
x(i)|z(i); µ, Σ

)
p(z(i);φ)

 (45)

where the inner sum comes from using Bayes rule on p(x(i)). Note that we don’t know the
z(i) for each data point, that information is hidden. This means we can’t get closed-form
solutions by doing MLE/taking derivatives as usual.

EM Algorithm. Purpose: allow us to move forward given we can’t do the standard MLE
approach (since we don’t know the values of each z(i).)

1. E-step. Estimate the values of the z(i)s by evaluating

For each i, j, set w(i)
j := p(z(i) = j | x(i); φ,µ, Σ) (46)

with Bayes’ rule, using whatever the current values of the estimated parameters are.

20where k-vector φ elements φj = P (z(i) = j)

22

2. M-step. Update parameters via standard MLE approach.

φj :=
1
m

m∑
i=1

w
(i)
j (47)

µj :=
∑m
i=1w

(i)
j x(i)∑m

i=1w
(i)
j

(48)

Σj :=
∑m
i=1w

(i)
j (x(i) − µj)(x(i) − µj)T∑m

i=1w
(i)
j

(49)

Some properties of the EM-algorithm. It is similar to the K-means algorithm, and like K-
means, it is also prone to local minima, so reinitializing at several different initial parameters
may be a good idea.

23

Neural Computation Fall 2016

Boltzmann Machines: November 6
Table of Contents Local Written by Brandon McKinzie

Lecture Slides

[Here, I use my own notation that actually remains consistent/intuitive...]

The energy, taken as a sort of average over all pairwise connections and the corresponding
network-wide probability is

E(s) = −1
2
∑
ij

wijsisj (50)

P (s) =
1
Z
e−βE(s) (51)

HKP Chapter 7.1

Structure. The units Si are divided into

1. Visible units. These may be further divided into, e.g., input and output units.

2. Hidden units. No connection to the outside world.

The units are stochastic, meaning

Si =

+1 with probability g(hi)
−1 with probability 1− g(hi)

(52)

hi =
∑
j

wijSj (53)

g(h) =
1

1 + exp(−2βh) (54)

24

where β = 1/T and T is the “temperature.” Goal: adjust the weights wij to give the states
of the visible units a particular desired probability distribution. This differs from a Hopfield
network in that now we have hidden units. With hidden units, we can specify higher-order
correlations between units21.

Boltzmann Machines - AIFH

A Boltzmann machine is essentially a fully connected, two-layer neural network; one vi-
sual layer and one hidden layer. Restricted Boltzmann machines are not fully connected;
all hidden neurons are connected to each visible neuron and vice versa, but there are no
connections between neurons of the same layer.

• Boltzmann machines are a generative model.
• The values presented to the visible neurons of a Boltzmann machines, when considered

with the weights, specify a probability that the hidden neurons will assume a value of
1, as opposed to 0.

Differences with Hopfield networks.

→ Hopfield networks suffer from recognizing false patterns.
→ BM can store a greater capacity of patterns than HN.
→ HN require the input patterns to be uncorrelated.
→ BM can be stacked to form layers.

21Whereas, in hopfield networks, we can do no more than specify all the 〈Si〉 and 〈SiSj〉

25

Neural Computation Fall 2016

Independent Component Analysis: November 12
Table of Contents Local Written by Brandon McKinzie

Sparse Coding Review. The goal is to represent input x as vector of sparse coefficients
s, where their relationship is given in the form

x = As+n (55)

→ x: Data matrix with shape n by d.
→ A: Feature matrix (contains the basis functions) of shape n by k > n. Here, k is the

number of sparse coefficents (shape of s).
→ s: The sparse coefficient matrix. Recall that the equation above is sometimes written as

a sum over the basis functions φ.

x =

∑
k

φk(x)sk

+n (56)

We say “sparse” because si = 0 a lot, and shape(s) > shape(x).
→ n: Gaussian noise. Entries are typically much smaller than entries of As.

• Model distribution.

p(x) =
∫
p(x|s)ps(s)ds where (57)

p(x|s) ∝ e
− |x−As|2

2σ2
n and (58)

ps(s) ∝ e−
∑
i C(si) ↔ C = − log(p(s)) (59)

• Learning Rule.

∆A ∝ ∂

∂A
〈log p(x)〉 (60)

∆A ∝
〈∫

[x−As]sT p(s|x)ds
〉

(Analytic) (61)

∆A ∝
〈
[x−Aŝ]ŝT

〉
(In Practice) (62)

26

where, ŝ represents a single sample at the posterior maximum:

ŝ = arg max
s

p(s|x) (63)

= arg min
s

[− log(p(s|x))] (64)

= arg min
s

[
λn
2 |x−As|2 +

∑
i

C(si)

]
(65)

∇sŝ ∝ λnAT [x−As]−C ′(s) (66)
, λn[b−Gs]− z(s) (67)

Independent Component Analysis. Special case where (1) A is square and full rank,
and (2) the noise n = 0. Now we have model

x = As → s = A−1x (68)

Learning rule.

∆A ∝
〈
[x−Aŝ]ŝT

〉
(69)

∆A ∝ A
〈
z(s)sT

〉
−A (70)

Equations for Different Priors

[LAPLACE] P (si) ∝ e−|si| ↔ zi= sign(si) (71)

[CAUCHY] P (si) ∝
1

1 + s2
i

↔ zi =
2|si|

1 + s2
i

(72)

[GAUSS] P (si) ∝ e−s
2
i 2 ↔ zi = |si| (73)

27

Algorithm summary/procedure.

1. Initialize square matrix A.
2. Until A converges, do:

– Compute source vector via s = A−1x.
– Compute

z = ∇sC(s) (74)
= ∇s [− log(p(s))] (75)
= −

∑
i

∇s log(ps(si)) (76)

– Update
∆A ∝ A

〈
z(s)sT

〉
−A (77)

ICA - Andrew Ng - CS 229

Cocktail Party. There are n people talking at a cocktail party, and we’ve placed n micro-
phones in the room to see if we can separate out the original n speakers’ speech signals. We
observe

x = As (78)

→ x(i) denotes the n-dimensional vector of our microphone recordings at time i.
→ s(i) denotes the n-dimensional vector of each speakers’ output at time i.
→ A be the unknown square mixing matrix. Goal: Find the unmixing matrix W = A−1.

Then we can recover the generated sources via s(i) = Wx(i).

W =

− wT1 −
− wT2 −

...
− wTn −

 −→ s
(i)
j = wTj x

(i) (79)

[ELI5] “People say stuff s(i), but it gets all mixed up so we hear stuff x(i). We want to know
how they related. Luckily, we can just unmix the mixed stuff.”

28

Ambiguities. The (1) order and (2) scaling of the n “wi” vectors in W is ambiguous. The
sign of s(ji) is irrelevant (sounds the same on a speaker). Key point: The aforementioned
ambiguities are the only ambiguities, so long as the sources si are non-Gaussian. Basically,
this is due to things like rotational invariance that can be present in Gaussians.

ICA Algorithm.

1. Let each source si have density ps(si). Then the joint distribution p(s) is the proba-
bility of hearing all independent sources si. From previous results, we know that this
implies a density for x = As = W−1s (below).

p(s) =
n∏
i=1

ps(si) =⇒ p(x) =
n∏
i=1

ps(w
T
i x) · |W | (80)

29

Final Project
Contents

2.1 WYGIWYS - A Visual Markup Decompiler 31

30

Final Project Fall 2016

WYGIWYS - A Visual Markup Decompiler: December 3
Table of Contents Local Written by Brandon McKinzie

Inputs/Outputs.

• Input: x ∈ X , consists of an image e.g. RH×W for grayscale images.
• Output: y ∈ Y , where y = 〈y1, . . . , yC〉 contains C tokens in the markup language.
• Example: Below, should we feed the input as the image of the equation on the left,

the output would be the vector on the right.
ρ =

∑
α>0 α 〈rho, =, sum, alpha, >, 0, alpha〉

At training time, we assume we are given a sequence of input images x and ground-truth
LATEXlabels y (

(x(1),y(1)), (x(2),y(2)), . . . , (x(J),y(J))
)

and at test time, given raw input image x, we predict its corresponding LATEXsource code,
and output the x̂ after compiling our prediction, then comparing x̂ with x.

The Model.

Input

Entropy = H

CONV

Size = n1

LSTM

Size = n1

Decoder

Size = n1

31

	Neural Computation VS 265
	Sparse Distributed Coding
	Foldiak Paper - Sparse Coding
	Comprehensive Review
	Unsupervised Learning

	Lab 4 & LCA Handout
	HKP 9.4 - Feature Mapping
	Locally Linear Embedding
	Recurrent Neural Networks
	Hopfield Networks Handout
	Mixture of Gaussians and EM Algorithm
	Boltzmann Machines
	Lecture Slides
	HKP Chapter 7.1
	Boltzmann Machines - AIFH

	Independent Component Analysis
	ICA - Andrew Ng - CS 229

	Final Project
	WYGIWYS - A Visual Markup Decompiler

