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Abstract

We present lattice-QCD results on the proton isovector scalar charge (gs). The calculation is carried out
with the gauge configurations generated with domain-wall fermions and Iwasaki gauge actions at β = 1.75,
corresponding to a lattice cutoff scale of a−1 = 1.378(7) GeV. We calculate gs for two ensembles of (degenerate)
light quark masses of 0.0042 and 0.001, both with momentum transfer q2 = 0. An extrapolation is then made
down to the physical quark mass to obtain physical value of gs. The value of gs describes the strength of
certain short-distance interactions thought to occur in, for example, neutron decays. Further study of the
isovector scalar charge is important for improving our understanding of nucleon substructure and physics
beyond the Standard Model such as dark matter and supersymmetry.

I. Introduction

Lattice QCD (LQCD) is the theory of strong interac-
tions at low momentum transfer, where the strong
coupling “constant” αs(Q2) is of order unity. If we
denote the Q2 scale where the effective coupling
becomes large as Λ2, we have [1]

αs(Q2) =
12π

(33− 2n f )log(Q2/Λ2)
(1)

where n f is the number of quark flfavors.
Therefore, as Q2 approaches the order of Λ2 (a

typical hadronic mass), αs becomes too large for
standard perturbative methods. In this regime, a
nonperturbative approach like LQCD is needed. The
foundation of LQCD begins with the partition func-
tion in Euclidean space-time [2]

Z =
∫
DAµDψDψ̄e−S (2a)

S =
∫

d4x(
1
4

FµνFµν − ψ̄Mψ) (2b)

where S is the QCD action, Fµν describes the gluons,
ψ and ψ̄ describe the fermions, and M is the Dirac
operator. The fermions can be integrated out and S
rewritten to obtain the simplified equations

Z =
∫
DAµe−S (3a)

S =
∫

d4x(
1
4

FµνFµν)−∑
i

log(DetMi) (3b)

where the sum is over the quark flavors, distin-
guished by the value of the bare quark mass. Physi-
cal observables are calculated in the form of expecta-
tion values

〈O〉 = 1
Z

∫
DAµOe−S (4)

which can be interpreted as a weighted average of
O over all paths, with weight e−S. Here O takes
the form of time-ordered products of gauge and/or
quark fields. Since the path integral is over all pos-
sible intermediate gauge field configurations, it is
impossible to evaluate exactly. Instead, we employ a
Monte Carlo (MC) procedure to perform computa-
tions, outlined as follows [3].

First, we generate a large number Ncon f of random
gauge configurations

A(α)
µ ≡ {A(α)

µ(0)A(α)
µ(1) . . . A(α)

µ(N−1)} α = 1, 2, . . . , Ncon f

(5)

where each A(α)
µ is a gauge field configuration on a

four-dimensional space-time lattice. The configura-
tions are sampled such that the probability P[Aα

µ] for

obtaining any given configuration A(α)
µ is

P[A(α
µ )] ∝ e−S[A(α

µ )] (6)

which we identified earlier as the weight in the
weighted average of (4). A possible MC estimator for
〈O〉 on the discretized lattice is the straight average
over the sampled configurations
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〈O〉 ≈ Ō ≡ 1
Ncon f

Ncon f

∑
α=1
O[A(α)

µ ] (7)

which approaches the exact value of 〈O〉 as Ncon f →
∞. As will be discussed in Section II, we use the
jackknife method to obtain an improved version of
this estimator.

A subtle observation with profound implications
in LQCD is the realization that derivatives found in
S[A(α)

µ ] are no longer continuous (on the discretized
lattice). Furthermore, the term in the QCD action
describing the fermions ψ discretizes differently than
the term describing the gauge fields Fµν. A large
part of LQCD is deciding which action discretization
scheme to employ for a given analysis. In this paper,
for the fermion action, we use the new Domain-
Wall Fermion (DWF) discretization scheme which
exhibits good chiral symmetry. The DWF action, a
five-dimensional extension of the Wilson Fermion
action, is [4]

SDWF = −∑
x,x′

∑
s,s′

ψ̄(x, s))[δs,s′D
‖
x,x′ + δx,x′D⊥s,s′] (8)

where x, x′ are four-dimensional Euclidean space-
time coordinates, s, s′ are coordinates in the extra
dimension (labeled from 0 to Ls-1), D‖x,x′ is the four-
dimensional Wilson-Dirac operator with a mass term,
and D⊥s,s′ is the five-dimensional analogue of the
Wilson hopping term 1.

We also use the Iwasaki + DSDR gauge actions
with gauge coupling β = 1.75. The lattice size is
fixed at 323 × 64 with a lattice cutoff scale of a−1 =
1.37 GeV.

The quark propagators, which represent the ampli-
tude for a quark propagating on the lattice, are found
as elements of the inverse Dirac operator matrix,

SF(y, j, b; x, i, a) = (M−1)y,j,b
x,i,a (9)

which gives the amplitude for the propagation of
a quark from site x with spin-color i, a to site-spin-
color y, j, b [2]. Quark propagators are typically
expressed as vacuum expectation values (VEV), so-
called because the quarks and inserted operators
are acting to disturb the QCD vacuum. This paper
is concerned with two VEV’s in the form of cor-
relation functions, denoted here by C2pt(t, ~P) and
CO3pt(τ, T; ~P), defined as

1Full definitions of these operators can be found in ref. [4]
page 3. The DWF action is simply stated here to provide the
reader with a visual understanding of the discretization process.

C2pt(t, ~P) =
〈

N(~p = ~P, t)N̄(~x = 0, 0)
〉

(10)

CO3pt(τ, T; ~P) =
〈

N(~p = ~P, T)O(~p = 0, τ)N̄(~x = 0, 0)
〉

(11)
where we will take N to be the lattice proton inter-
polating operator. Correlation functions like these
can be visualized as shown in figure 1.

Figure 1: A correlation function diagram. From left to
right, the nucleon interpolating operator creates
a nucleon, operator insertions occur at interme-
diate X’s, and the diagram ends with a nucleon
annihilation operator.

Since we take up and down quarks as degener-
ate, there is no contribution from disconnected-loop
diagrams2. If the insertion of O is sufficiently far
away from both N operators in time (i.e. large τ
and T − τ), then contributions from excited states
are negligible [5]. Taking their ratio and using this
approximation yields the matrix element

RO(τ, T; ~P) =
CO3pt(τ, T; ~P)

C2pt(T, ~P)
=
〈

N(~P)
∣∣∣O ∣∣∣N(~P)

〉
(12)

Therefore, a common way of computing matrix
elements in the form of (12) at fixed T is to calculate
their value at different timeslices t and perform a
horizontal-line fit in the so-called “plateau region”.
The value of the matrix element will plateau in times-
lice regions with minimal excited-state contributions.
We fit the data here to satisfy the approximation
needed to write R in the final form of (12).

The isovector scalar charge gs, defined in

〈
N(~P)

∣∣∣ ūu− d̄d
∣∣∣N(~P)

〉
= gsū(~P)u(~P) (13)

can be computed with the aforementioned ratio-
plateau method. This paper presents the computa-
tion of gs at two different unphysical quark masses.

2Note that this statement is only true because we are working
with isovector quantities.
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Chiral perturbation theory (ChPT) provides the
analytical prediction of how quantities like gs should
vary with the pion mass, so a chiral extrapolation
can be made down to the physical quark mass to
predict the true vale of gs. The statistical methods
and computational procedures used thereafter are
described in Section II and Section III, respectively.

II. Jackknife Statistics and All-Mode
Averaging

The Jackknife procedure, developed to correct for
bias, is well-suited for calculations involving corre-
lated samples [6]. To illustrate the technique, we let
{O} denote some set containing n sampled values
of an observable O. Then, we construct a jackknife
set of size n from the original sample, where the ith
element is an ensemble average over all except the
ith (original) element.

O(jack)
i =

1
n− 1

n

∑
j 6=i

(Oj) (14)

We now have a set of n estimators which can be
used for further computations. This procedure also
results in simple error propagation. After a com-
putation on each of the n jackknife estimators is
performed, the final estimator is simply the set aver-
age ¯〈O〉, and the associated errors can be calculated
directly as

SE(jack) =

√
n− 1

n

n

∑
i=1

(〈O〉i − ¯〈O〉)2 (15)

To further reduce statistical errors, we implement
all-mode averaging (AMA). Here this means relax-
ing the stopping condition of the conjugate gradient
method when calculating the inverse of the Dirac
operator so that all eigenmodes are taken into ac-
count [7]. This is especially helpful for calculations
using low quark masses, where exceedingly high
computational resources are necessary to obtain a
decent signal to noise ratio [8], S/N, where

S/N(t) ∝
√

Nmeasexp[−(MN −
3
2

Mπ)t] (16)

In such cases, we can first obtain data for a large
number of gauge configurations but low precision3.
Then, we can obtain data for a much smaller number
of gauge configurations but with high precision4.

3due to the relaxed stopping condition.
4The level of precision is limited only by the floating-point

precision of the computer.

The utility of generating these different sets of data
can be suggested by

Oimp = Oexact +Oappx −Oappx (17)

which is (clearly) identical to the exact value. We
can rewrite this equation to find the improved esti-
mator Oimp averaged over the jackknife estimators
as

〈O〉(imp) =
1

Nappx

Nappx

∑
i=1

(O(appx)
i )

+
1

Nexact

Nexact

∑
i=1

(O(exact)
i −O(appx)

i )

(18)

where Nappx >> Nexact, the brackets in 〈O〉(imp) de-

note a full ensemble-average, and O(appx)
i in the sec-

ond summation is restricted access to only the type
of gauge configurations used by O(exact)

i . This also
provides a convenient way of analyzing how close
the improved estimator is to the exact value. By in-
creasing Nexact and observing the relative change in
the value of 〈O〉(imp), one can obtain an idea of the
estimator’s quality.

III. Computational Procedure

Data files representing different gauge configura-
tions are organized into directories by source loca-
tion. Here, source location refers to the time input
for N̄ from (10), and the source-sink separation5 is
a fixed nine lattice units. For the unphysical quark
mass of 0.001, data is further organized into directo-
ries by spatial location (the spatial coordinates of N̄
are all zero for the 0.0042 quark mass).

Once the data is properly stored and organized,
the following steps outline the procedure to calculate
gs for the unphysical quark mass of 0.0042:

1. Extract the two desired correlation functions
from (10) and organize the data by source loca-
tion. Each file contains the correlation functions
evaluated for 64 different values of τ, the time
of operator insertion. At this stage, we have
Nsrc × Ncon f correlation functions, where Nsrc is
the number of source locations and Ncon f is the
number of gauge configurations.

2. Average the extracted correlation values at a
given gauge configuration over all different

5Again, this refers to temporal separation. Henceforth, all
“distances” mentioned can be assumed to be in time unless stated
otherwise.
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source locations. We are able to do this because
of the translational invariance of the LQCD La-
grangian. Now we have Ncon f number of corre-
lation functions with improved statistics.

3. Generate two (independent) jackknife sets,
{
〈
C2pt

〉
i} and {

〈
C3pt

〉
i}, each of size Ncon f . The

set elements are the correlation functions av-
eraged over gauge configurations with the ith
configuration omitted6.

4. Compute the ratio from (12) to obtain the new
jackknife set {gjack

s }. Each element of this set
represents the calculated value of gs for different
values of time τ. Recall from Section II that the
jackknife method correctly propagates errors
when performing calculations such as element-
by-element division of two jackknife sets.

5. Fit each element of {gjack
s } with a horizontal

line in the plateau region. Various timeslice
regions are fitted and a χ2 value is computed to
determine goodness-of-fit. The region with the
lowest returned χ2 value is designated as the
“plateau region” for all future fits.

6. Average the {gjack
s } plots together, along with

the fit result for each. The errors for the data
points and final fit value are computed using
the error formula in (15). The final fit value and
its associated errors represent the best approxi-
mation of gs for the given ensemble.

7. Repeat steps 1-6 for a different unphysical quark
mass of 0.001. The only difference is that, for
the 0.001 case, we use the AMA procedure to
obtain {gjack

s }. Again, we see the virtue of us-
ing the jackknife method from the fact that the
approximated and exact estimators from step 3
can be added in the simple form of (18) with
error propagation correctly handled in the back-
ground.

6See equation (14).

IV. Results

Unless stated otherwise, all quantities are presented
in lattice units, defined as [9]

ψ̂(x) = a3/2ψ(x) (19)
ˆ̄ψ(x) = a3/2ψ̄(x) (20)

m̂ f = am f (21)

x̂ = x/a (22)

where here, a ≈ 0.144 fm. The first primary results
are the fitted values for gs at two different unphys-
ical quark masses of 0.0042 and 0.001, shown in
figures 2 and 3, respectively. Although the AMA
procedure, applied to the figure 3 data, significantly
reduced the statistical error, the low signal-to-noise
ratio associated with the low 0.001 quark mass (see
18) prevented the error bars from approaching the
quality of figure 2. Nonetheless, there is still good
agreement between the two fitted values.

τ
0 1 2 3 4 5 6 7

sg

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 s
g

 0.276±Fit: 1.625 

Figure 2: Unrenormalized gs as a function of the operator
insertion time τ for an unphysical quark mass
of 0.0042.
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Figure 3: Unrenormalized gs as a function of the operator
insertion time τ for an unphysical quark mass
of 0.001
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Table 1: Conversions from the bare quark mass to the pion
mass.

mq [Lattice Units] mπ [GeV]
0.001 0.1723

0.0042 0.2494

Before we perform the chiral extrapolation, we
must renormalize gs and convert the lattice-unit
quark massess to the corresponding physical-unit
pion masses. We use the renormalization factor
Zs = 1/1.4(1) at the renormalization scale of 3 GeV
from reference [5]. This factor is an approximation
based on the spread of the calculated values for Zm,
and the error, generated to cover the spread, may
be overestimated. If we denote our previous fitted
result for gs as g(bare)

s , then

g(renorm)
s = Zs × g(bare)

s (23)

σ
g(renorm)

s
=

√
(g(bare)

s )2(σZs)
2 + (Zs)2(σgs)

2 (24)

where σ
g(renorm)

s
is the error of g(renorm)

s . Next we con-

vert each bare quark mass to the corresponding pion
mass. The detailed calculations of this step can be
found in table four of reference [10], but we simply
quote the result in table 1 above.

Since we are working in the degenerate up and
down quark limit, we will compare these values
with a physical pion mass of 0.135 GeV. The renor-
malized values of gs are plotted as a function of the
corresponding squared pion mass in figure 4. As
an approximation to ChPT, we fit these data points
with a straight-line fit. With only two data points
available, this is also the only sensible fitting method.

]2 [GeV2
πm

0.01 0.02 0.03 0.04 0.05 0.06 0.07

s
 g
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1.8

2

s
Isovector Scalar Charge g

 0.543±: 1.253 
s

Extrapolated g

Figure 4: gs as a function of pion mass. The line through
the middle is the extrapolation of gs to the phys-
ical pion mass (starred). The shaded region rep-
resents the approximate error of gs in the region.

Table 2: Renormalized gs for different pion masses. The
last row contains the extrapolated result.

m2
π [GeV2] gs

0.0297 1.229 ± 0.346

0.0622 1.161 ± 0.214

0.0182 1.253 ± 0.543

To obtain a true extrapolation, such as that found
in figure 3 of [5], we would need more simulated
data at different quark masses. We see in table 2 that
gs does not appear to vary much for different values
of the quark mass.

V. Summary and Conclusions

This research offers the value of the isovector scalar
charge gs using the new domain-wall fermion dis-
cretization scheme and low quark masses. The value
of gs was calculated for two different unphysical
quark masses of 0.0042 and 0.001. The fitted val-
ues for these masses were extrapolated down to
the physical quark mass to obtain the best approx-
imation for the physical gs at 1.253± 0.543. Such
computations are essential for understanding ex-
perimental measurements of scalar interactions in,
for example, neutron beta decay. The interaction is
expected to be small compared to the well-known
V − A structure of weak interactions, and thus few
experiments have been able to measure gs. How-
ever, new high-precision instruments are expected to
be able to probe the scales necessary to measure the
scalar contribution. Such measurements need precise
theoretical constraints in order to convey meaning-
ful information in a physics analysis. The results
presented here both provide new constraints and
strengthen former calculations of the isovector scalar
charge.
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