• Home
  • About
    • Brandon McKinzie photo

      Brandon McKinzie

      A bit of physics here, and a bit of computer science there.

    • Learn More
    • Email
    • Twitter
    • LinkedIn
    • Github
  • Posts
    • All Posts
    • All Tags
  • Research
  • Notes
  • TensorFlow Notebooks

Tutorial - Machine Learning Classifiers

01 Nov 2016

Reading time ~3 minutes

Choosing a classification algorithm

Five main steps involved in training a machine learning algorithm:

  1. Selection of features.
  2. Choosing a performance metric.
  3. Choosing a classifier and optimization algorithm.
  4. Evaluating the performance of the model.
  5. Tuning the algorithm.

Training a perceptron via scikit-learn

We train a perceptron model similar to CH2 and again use the Iris dataset. This time, however, we do it with the help of scikit-learn.

from sklearn import datasets
import numpy as np

# __________ Obtain desired feautures/labels from the iris dataset. __________
iris = datasets.load_iris()
# Assign sample features (1) petal length and (2) petal width to X. 
X = iris.data[:, [2, 3]]
# Flower names stored as integers:
# Setosa(0), Versicolor(1), Virginica(2). 
y = iris.target 

# _________ Split dataset into separate training and test datasets. _________
from sklearn.cross_validation import train_test_split
# Randomly split X and y arrays to 30% test data, 70% training data. 
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.3, random_state=0)

# __________ Feature scaling: standardize features using StandardScaler class. __________
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
# Estimate training data mean and stdDev for each feature dimension. 
sc.fit(X_train)
# Standardize both training and test data using the found values of mu, sigma. 
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

# __________ Train a perceptron model. __________
from sklearn.linear_model import Perceptron
ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0)
ppn.fit(X_train_std, y_train)

# __________ Make predictions on the test data. __________
from sklearn.metrics import accuracy_score
y_pred = ppn.predict(X_test_std) # Test data consists of 45 samples. 
print('Misclassified samples: %d' % (y_test != y_pred).sum()) 
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred)) # = 1 - 4/45 = 0.91
Misclassified samples: 4
Accuracy: 0.91
%matplotlib inline
# Modify plot_decision_regions function from CH2 and plot (some comments from ch2 omitted)
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt

def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
    # Setup marker generator and color map. 
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])
    
    # Plot the decision surface. 
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), 
                          np.arange(x2_min, x2_max, resolution)) 
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())
    
    # Plot all samples. 
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], 
                    alpha=0.8, c=cmap(idx), 
                    marker=markers[idx], label=cl)
        
    # NEW:
    # Highlight test samples.
    if test_idx:
        X_test, y_test = X[test_idx, :], y[test_idx]
        plt.scatter(X_test[:, 0], X_test[:, 1], c='', 
                   alpha=1.0, linewidths=1, marker='o',
                   s=55, label='test set')
        
X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined_std,
                     y=y_combined, 
                     classifier=ppn,
                     test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.xlabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.show()

png

Modeling class probabilities via logistic regression

  • Biggest disadvantage of perceptron: never converges if classes are not perfectly linearly separable.
  • More powerful algorithm for linear and binary classification is logistic regression (not actually regression; is classification).

Logistic regression intuition and conditional probabilities

  • odds ratio: the odds in favor of a particular event, $\frac{p}{1-p}$.
    • $p$ refers to the probability of the positive event which we just define as the outcome we want to predict.
  • The logit function, defined as the logarithm of the odds ratio:
    • Input: values in the range 0 to 1 (probabilities of a class, given a particular sample).
    • Output: values over the entire real number range.
  • We, however, want the inverse behavior of this; we want to know the probability of a class, given a sample, by inputting values in the real number range. This function is called the logistic function, abbreviated as sigmoid function: \(\phi(z) = \frac{1}{1 + e^{-z}}\)
    • where $z = \mathbf{w}^T\mathbf{x}$.
    • As $z \rightarrow \infty$, $\phi(z) \rightarrow 1$, and as $z \rightarrow -\infty$, $\phi(z) \rightarrow 0$.



machine learningtutorialpython Like Tweet +1